Machine learning could predict death or heart attack with over 90% accuracy


WASHINGTON: A study claimed that machine learning, modern bedrock of artificial intelligence, could predict death or heart attack with more than 90 per cent accuracy.

The study was presented at The International Conference on Nuclear Cardiology and Cardiac CT (ICNC) 2019.

Machine learning is used every day. Google’s search engine, face recognition on smartphones, self-driving cars, Netflix and Spotify recommendation systems — all use machine learning algorithms to adapt to the individual user.

By repeatedly analysing 85 variables in 950 patients with known six-year outcomes, an algorithm ‘learned’ how imaging data interacts. It then identified patterns correlating the variables to death and heart attack with more than 90 per cent accuracy.

Study author, Dr Luis Eduardo Juarez-Orozco of the Turku PET Centre, Finland said, “These advances are far beyond what has been done in medicine, where we need to be cautious about how we evaluate risk and outcomes. We have the data but we are not using it to its full potential yet.”

Doctors use risk scores to make treatment decisions. But these scores are based on just a handful of variables and often have modest accuracy in individual patients.

Through repetition and adjustment, machine learning can exploit large amounts of data and identify complex patterns that may not be evident to humans.

Dr Juarez-Orozco explained, “Humans have a very hard time thinking further than three dimensions (a cube) or four dimensions (a cube through time). The moment we jump into the fifth dimension we are lost. Our study shows that very high dimensional patterns are more useful than single dimensional patterns to predict outcomes in individuals and for that, we need machine learning.”

The study enrolled 950 patients with chest pain who underwent the center’s usual protocol to look for coronary artery disease.

A coronary computed tomography angiography (CCTA) scan yielded 58 pieces of data on the presence of coronary plaque, vessel narrowing, and calcification. Those with scans suggestive of disease underwent a positron emission tomography (PET) scan which produced 17 variables on blood flow. Ten clinical variables were obtained from medical records including sex, age, smoking, and diabetes.

During an average six-year follow-up there were 24 heart attacks and 49 deaths from any cause. The 85 variables were entered into a machine learning algorithm called ‘LogitBoost’, which analysed them over and over again until it found the best structure to predict who had a heart attack or died. (ANI)